View的invalidate传递与绘制流程分析

上一篇文章自定义View——View的弹性滑动中,我们对View的滑动进行了实战以及简单分析。但在文章的最后,仍然遗留了两个问题,第一个是invalidate与postInvalidate有什么区别呢?第二个是invalidate是如何调用computeScroll()方法的呢?这两个问题将在这一篇文章中进行分析。

自定义View系列目录

一、invalidate与postInvalidate

invalidate与postInvadlidate都是用于请求View重绘的API,invalidate在主线程中进行调用,而postInvadlidate则在子线程中进行调用。

我们来分析下postInvadlidate的源码 :

1
2
3
public void postInvalidate() {
postInvalidateDelayed(0);
}

postInvalidate()蒋会调用postInvalidateDelayed(0)方法,继续跟进。

1
2
3
4
5
6
public void postInvalidateDelayed(long delayMilliseconds) {
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
attachInfo.mViewRootImpl.dispatchInvalidateDelayed(this, delayMilliseconds);
}
}

postInvalidateDelayed方法,通过attachInfo获取到当前的ViewRootImpl对象,调用它的dispatchInvalidateDelayed方法

1
2
3
4
public void dispatchInvalidateDelayed(View view, long delayMilliseconds) {
Message msg = mHandler.obtainMessage(MSG_INVALIDATE, view);
mHandler.sendMessageDelayed(msg, delayMilliseconds);
}

从上面的源码已经可以看出,postInvalidate的子线程这一个特性了。再继续跟下去看看。

1
2
3
4
5
6
7
8
9
10
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_INVALIDATE:
((View) msg.obj).invalidate();
break;
...
}
}

代码跟到这里,也就明白了,postInvalidate通过sendMessageDelayed的方法,加入到了looper中,之后在handleMessage中再调用对应View的invalidate()方法,请求View重绘。

二、invalidate流程分析

现在我们来看看invalidate是如何让View进行重绘的呢?

(PS:我这里使用的API版本为23,具体的代码可能和其他的版本有稍许不同)

1、invalidate的请求传递

我们的旅程从View的invalidate传递过程开始

现在来看看View#invalidate()方法。

1
2
3
4
5
6
7
public void invalidate() {
invalidate(true);
}
void invalidate(boolean invalidateCache) {
invalidateInternal(0, 0, mRight - mLeft, mBottom - mTop, invalidateCache, true);
}

invalidate调用View#invalidateInternal方法传入当前View的位置参数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
void invalidateInternal(int l, int t, int r, int b, boolean invalidateCache,
boolean fullInvalidate) {
// 如果View重绘,则它也将重绘
if (mGhostView != null) {
mGhostView.invalidate(true);
return;
}
// View是否可见,是否在动画运行中
if (skipInvalidate()) {
return;
}
// 根据View的标记来判断View是否需要进行重绘
if ((mPrivateFlags & (PFLAG_DRAWN | PFLAG_HAS_BOUNDS)) == (PFLAG_DRAWN | PFLAG_HAS_BOUNDS)
|| (invalidateCache && (mPrivateFlags & PFLAG_DRAWING_CACHE_VALID) == PFLAG_DRAWING_CACHE_VALID)
|| (mPrivateFlags & PFLAG_INVALIDATED) != PFLAG_INVALIDATED
|| (fullInvalidate && isOpaque() != mLastIsOpaque)) {
if (fullInvalidate) {
mLastIsOpaque = isOpaque();
mPrivateFlags &= ~PFLAG_DRAWN;
}
// 设置标志,表明View正在被重绘
mPrivateFlags |= PFLAG_DIRTY;
//清除缓存,设置标志,表明重绘由当前View发起
if (invalidateCache) {
mPrivateFlags |= PFLAG_INVALIDATED;
mPrivateFlags &= ~PFLAG_DRAWING_CACHE_VALID;
}
// 把需要重绘的View区域传递给父View
final AttachInfo ai = mAttachInfo;
final ViewParent p = mParent;
if (p != null && ai != null && l < r && t < b) {
final Rect damage = ai.mTmpInvalRect;
// 设置重绘区域
damage.set(l, t, r, b);
// 关键代码,调用父View的方法,向上传递重绘事件
p.invalidateChild(this, damage);
}
...
}
}

上述代码中,会判断当前View的状态,是否需要进行重绘,之后设置一系列标记位。通过父View的invalidateChild(this, damage)方法,将需要重绘的区域传递给父View。

接着来看下ViewGroup#invalidateChild方法,这里仅截取了其中的主要代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
public final void invalidateChild(View child, final Rect dirty) {
ViewParent parent = this;
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
...
// 保存子View的left、top
final int[] location = attachInfo.mInvalidateChildLocation;
location[CHILD_LEFT_INDEX] = child.mLeft;
location[CHILD_TOP_INDEX] = child.mTop;
if (!childMatrix.isIdentity() ||
(mGroupFlags & ViewGroup.FLAG_SUPPORT_STATIC_TRANSFORMATIONS) != 0) {
RectF boundingRect = attachInfo.mTmpTransformRect;
boundingRect.set(dirty);
Matrix transformMatrix;
if ((mGroupFlags & ViewGroup.FLAG_SUPPORT_STATIC_TRANSFORMATIONS) != 0) {
Transformation t = attachInfo.mTmpTransformation;
boolean transformed = getChildStaticTransformation(child, t);
if (transformed) {
transformMatrix = attachInfo.mTmpMatrix;
transformMatrix.set(t.getMatrix());
if (!childMatrix.isIdentity()) {
transformMatrix.preConcat(childMatrix);
}
} else {
transformMatrix = childMatrix;
}
} else {
transformMatrix = childMatrix;
}
transformMatrix.mapRect(boundingRect);
// 设置需要重绘的区域
dirty.set((int) (boundingRect.left - 0.5f),
(int) (boundingRect.top - 0.5f),
(int) (boundingRect.right + 0.5f),
(int) (boundingRect.bottom + 0.5f));
}
// 这里的do...while方法,让view可以不断的去调用父类的
// invalidateChildInParent方法,来传递重绘请求
do {
View view = null;
if (parent instanceof View) {
view = (View) parent;
}
if (drawAnimation) {
if (view != null) {
view.mPrivateFlags |= PFLAG_DRAW_ANIMATION;
} else if (parent instanceof ViewRootImpl) {
((ViewRootImpl) parent).mIsAnimating = true;
}
}
// If the parent is dirty opaque or not dirty, mark it dirty with the opaque
// flag coming from the child that initiated the invalidate
if (view != null) {
if ((view.mViewFlags & FADING_EDGE_MASK) != 0 &&
view.getSolidColor() == 0) {
opaqueFlag = PFLAG_DIRTY;
}
if ((view.mPrivateFlags & PFLAG_DIRTY_MASK) != PFLAG_DIRTY) {
view.mPrivateFlags = (view.mPrivateFlags & ~PFLAG_DIRTY_MASK) | opaqueFlag;
}
}
// 这里是关键代码,他会调用父类的
parent = parent.invalidateChildInParent(location, dirty);
if (view != null) {
// Account for transform on current parent
Matrix m = view.getMatrix();
if (!m.isIdentity()) {
RectF boundingRect = attachInfo.mTmpTransformRect;
boundingRect.set(dirty);
m.mapRect(boundingRect);
dirty.set((int) (boundingRect.left - 0.5f),
(int) (boundingRect.top - 0.5f),
(int) (boundingRect.right + 0.5f),
(int) (boundingRect.bottom + 0.5f));
}
}
} while (parent != null);
}
}

上述代码中,设置了需要重绘的区域dirty。之后再do…while方法中,反复的调用parent = parent.invalidateChildInParent(location, dirty)方法,来调用父类的invalidateChildInParent对View的重绘请求进行传递。这里的parent有可能是ViewGroup,也有可能是ViewRoot,我们先来看看ViewGroup#invalidateChildInParent方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public ViewParent invalidateChildInParent(final int[] location, final Rect dirty) {
if ((mPrivateFlags & PFLAG_DRAWN) == PFLAG_DRAWN ||
(mPrivateFlags & PFLAG_DRAWING_CACHE_VALID) == PFLAG_DRAWING_CACHE_VALID) {
if ((mGroupFlags & (FLAG_OPTIMIZE_INVALIDATE | FLAG_ANIMATION_DONE)) !=
FLAG_OPTIMIZE_INVALIDATE) {
// 子View中的布局位置转换为父View中的布局位置
dirty.offset(location[CHILD_LEFT_INDEX] - mScrollX,
location[CHILD_TOP_INDEX] - mScrollY);
if ((mGroupFlags & FLAG_CLIP_CHILDREN) == 0) {
// 合并绘制区域集合
dirty.union(0, 0, mRight - mLeft, mBottom - mTop);
}
final int left = mLeft;
final int top = mTop;
if ((mGroupFlags & FLAG_CLIP_CHILDREN) == FLAG_CLIP_CHILDREN) {
if (!dirty.intersect(0, 0, mRight - left, mBottom - top)) {
dirty.setEmpty();
}
}
mPrivateFlags &= ~PFLAG_DRAWING_CACHE_VALID;
location[CHILD_LEFT_INDEX] = left;
location[CHILD_TOP_INDEX] = top;
if (mLayerType != LAYER_TYPE_NONE) {
mPrivateFlags |= PFLAG_INVALIDATED;
}
return mParent;
} else {
mPrivateFlags &= ~PFLAG_DRAWN & ~PFLAG_DRAWING_CACHE_VALID;
location[CHILD_LEFT_INDEX] = mLeft;
location[CHILD_TOP_INDEX] = mTop;
if ((mGroupFlags & FLAG_CLIP_CHILDREN) == FLAG_CLIP_CHILDREN) {
dirty.set(0, 0, mRight - mLeft, mBottom - mTop);
} else {
// in case the dirty rect extends outside the bounds of this container
dirty.union(0, 0, mRight - mLeft, mBottom - mTop);
}
if (mLayerType != LAYER_TYPE_NONE) {
mPrivateFlags |= PFLAG_INVALIDATED;
}
return mParent;
}
}
return null;
}

在上述代码中,将会使用offset,把子View需要重绘的坐标区域转换为父View中的坐标区域。之后使用union对子View与父View的区域进行集合运算,获得需要绘制的区域。

接下来我们再来看看ViewRoot#invalidateChildInParent方法,ViewRoot并不是View,ViewRoot的实现类为ViewRootImpl,我们来看下它的invalidateChildInParent方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
@Override
public ViewParent invalidateChildInParent(int[] location, Rect dirty) {
// 检查线程是否为创建View的线程,即创建View的线程中是否含有此ViewRootImpl
checkThread();
if (DEBUG_DRAW) Log.v(TAG, "Invalidate child: " + dirty);
// 检查重绘区域
if (dirty == null) {
invalidate();
return null;
} else if (dirty.isEmpty() && !mIsAnimating) {
return null;
}
// 动画和滑动的检查设置
if (mCurScrollY != 0 || mTranslator != null) {
mTempRect.set(dirty);
dirty = mTempRect;
if (mCurScrollY != 0) {
dirty.offset(0, -mCurScrollY);
}
if (mTranslator != null) {
mTranslator.translateRectInAppWindowToScreen(dirty);
}
if (mAttachInfo.mScalingRequired) {
dirty.inset(-1, -1);
}
}
invalidateRectOnScreen(dirty);
return null;
}
private void invalidateRectOnScreen(Rect dirty) {
...
if (!mWillDrawSoon && (intersected || mIsAnimating)) {
//关键代码,ViewTree列表
scheduleTraversals();
}
}

上述代码中,进入之后会线程以及重绘区域的检查,之后调用invalidateRectOnScreen方法,然后调用scheduleTraversals()方法。

来继续看看ViewRootImpl#scheduleTraversals()。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
void scheduleTraversals() {
if (!mTraversalScheduled) {
mTraversalScheduled = true;
// handler消息传递绘制请求
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
if (!mUnbufferedInputDispatch) {
scheduleConsumeBatchedInput();
}
notifyRendererOfFramePending();
pokeDrawLockIfNeeded();
}
}
final TraversalRunnable mTraversalRunnable = new TraversalRunnable();
final class TraversalRunnable implements Runnable {
@Override
public void run() {
doTraversal();
}
}
void doTraversal() {
if (mTraversalScheduled) {
mTraversalScheduled = false;
mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
if (mProfile) {
Debug.startMethodTracing("ViewAncestor");
}
// 关键代码,执行ViewTree遍历
performTraversals();
if (mProfile) {
Debug.stopMethodTracing();
mProfile = false;
}
}
}

上述代码中,将会之后handler,之后会调用mTraversalRunnable类,从而调用doTraversal方法,最后调用performTraversals()执行ViewTree的遍历。

现在继续查看ViewRootImpl#performTraversals()方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
private void performTraversals() {
...
if (!cancelDraw && !newSurface) {
if (!skipDraw || mReportNextDraw) {
if (mPendingTransitions != null && mPendingTransitions.size() > 0) {
for (int i = 0; i < mPendingTransitions.size(); ++i) {
mPendingTransitions.get(i).startChangingAnimations();
}
mPendingTransitions.clear();
}
// 关键代码
performDraw();
}
}
...
}
private void performDraw() {
...
final boolean fullRedrawNeeded = mFullRedrawNeeded;
mFullRedrawNeeded = false;
mIsDrawing = true;
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "draw");
try {
// 关键代码
draw(fullRedrawNeeded);
} finally {
mIsDrawing = false;
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
...
}

在其中进行View的是否可见,是否为surfasce,是否正在绘制,是否存在于删除列表中等判断,之后调用performDraw()开始执行绘制。在performDraw()又调用了ViewRootImpl的draw方法,并传递了fullRedrawNeeded参数,此参数源自mFullRedrawNeeded成员变量,用于表示是否需要重新绘制全部的View。现在继续看看ViewRootImpl#draw源码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
private void draw(boolean fullRedrawNeeded) {
Surface surface = mSurface;
...
// 获取mDirty,该值表示需要重绘的区域
final Rect dirty = mDirty;
if (mSurfaceHolder != null) {
// The app owns the surface, we won't draw.
dirty.setEmpty();
if (animating) {
if (mScroller != null) {
mScroller.abortAnimation();
}
disposeResizeBuffer();
}
return;
}
// 如果为ture,则设置dirty区域为全屏
if (fullRedrawNeeded) {
mAttachInfo.mIgnoreDirtyState = true;
dirty.set(0, 0, (int) (mWidth * appScale + 0.5f), (int) (mHeight * appScale + 0.5f));
}
...
// 重绘区域、动画判断
// 硬件渲染判断
// 关键代码
if (!drawSoftware(surface, mAttachInfo, xOffset, yOffset, scalingRequired, dirty)) {
return;
}
...
}

在draw方法中,根据传如fullRedrawNeeded参数,设置需要重绘的dirty区域,最后调用drawSoftware方法,把参数传递进去,现在继续看ViewRootImpl#drawSoftware源码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
private boolean drawSoftware(Surface surface, AttachInfo attachInfo, int xoff, int yoff,
boolean scalingRequired, Rect dirty) {
...
try {
if (!canvas.isOpaque() || yoff != 0 || xoff != 0) {
canvas.drawColor(0, PorterDuff.Mode.CLEAR);
}
dirty.setEmpty();
mIsAnimating = false;
mView.mPrivateFlags |= View.PFLAG_DRAWN;
try {
canvas.translate(-xoff, -yoff);
if (mTranslator != null) {
mTranslator.translateCanvas(canvas);
}
canvas.setScreenDensity(scalingRequired ? mNoncompatDensity : 0);
attachInfo.mSetIgnoreDirtyState = false;
// 关键代码,mView为DecorView,开启View绘制
mView.draw(canvas);
drawAccessibilityFocusedDrawableIfNeeded(canvas);
} finally {
if (!attachInfo.mSetIgnoreDirtyState) {
// Only clear the flag if it was not set during the mView.draw() call
attachInfo.mIgnoreDirtyState = false;
}
}
}
...
}

上述代码中,首先对canvas进行一些属性设置,包括色块、平移等。之后调用mView.draw(canvas)方法,开始对View进行绘制。mView就是window中的顶级视图DecorView(这个坑会在之后的文章中说明,这里当做一个顶级的ViewGroup即可)。

2、绘制流程

DecorView继承自FrameLayout,而ViewGroup的draw方法继承自View,so,所以我们直接看View#draw即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
public void draw(Canvas canvas) {
final int privateFlags = mPrivateFlags;
final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
(mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;
/*
* Draw traversal performs several drawing steps which must be executed
* in the appropriate order:
*
* 1. Draw the background
* 2. If necessary, save the canvas' layers to prepare for fading
* 3. Draw view's content
* 4. Draw children
* 5. If necessary, draw the fading edges and restore layers
* 6. Draw decorations (scrollbars for instance)
*/
// Step 1, draw the background, if needed
int saveCount;
if (!dirtyOpaque) {
drawBackground(canvas);
}
// skip step 2 & 5 if possible (common case)
final int viewFlags = mViewFlags;
boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
if (!verticalEdges && !horizontalEdges) {
// Step 3, draw the content
if (!dirtyOpaque) onDraw(canvas);
// Step 4, draw the children
dispatchDraw(canvas);
// Overlay is part of the content and draws beneath Foreground
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().dispatchDraw(canvas);
}
// Step 6, draw decorations (foreground, scrollbars)
onDrawForeground(canvas);
// we're done...
return;
}
...
}

draw方法中,官方对其的步骤进行了清晰的注释,我们来看下流程,在执行流程之前会检查绘制区域是否透明:

  • 1、绘制View背景,如果透明则不绘制
  • 2、如果需要,则保存画布的图层
  • 3、绘制View内容,如果透明则不绘制
  • 4、绘制子View————这个很重要
  • 5、如果需要,则绘制View的褪色边缘和恢复图层
  • 6、绘制装饰滚动条

这里最重要的步骤是第四步,绘制子View,现在我们来看下这个ViewGroup#dispatchDraw(canvas)方法,注意这里的View是一个DecorView,所以要在ViewGroup中去查看这个方法,View中的这个方法是一个空方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
protected void dispatchDraw(Canvas canvas) {
...
for (int i = 0; i < childrenCount; i++) {
while (transientIndex >= 0 && mTransientIndices.get(transientIndex) == i) {
final View transientChild = mTransientViews.get(transientIndex);
if ((transientChild.mViewFlags & VISIBILITY_MASK) == VISIBLE ||
transientChild.getAnimation() != null) {
more |= drawChild(canvas, transientChild, drawingTime);
}
transientIndex++;
if (transientIndex >= transientCount) {
transientIndex = -1;
}
}
int childIndex = customOrder ? getChildDrawingOrder(childrenCount, i) : i;
final View child = (preorderedList == null)
? children[childIndex] : preorderedList.get(childIndex);
if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {
more |= drawChild(canvas, child, drawingTime);
}
}
while (transientIndex >= 0) {
// there may be additional transient views after the normal views
final View transientChild = mTransientViews.get(transientIndex);
if ((transientChild.mViewFlags & VISIBILITY_MASK) == VISIBLE ||
transientChild.getAnimation() != null) {
more |= drawChild(canvas, transientChild, drawingTime);
}
transientIndex++;
if (transientIndex >= transientCount) {
break;
}
}
...
}

上述代码对所有的子View进行遍历,并调用ViewGroup#drawChild方法。

1
2
3
protected boolean drawChild(Canvas canvas, View child, long drawingTime) {
return child.draw(canvas, this, drawingTime);
}

drawChild又调用了子View的draw方法,这样绘制就传递了下去,当然这个draw方法和之前这一小节一开始介绍的View#draw方法并不一样,我们来看看

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
boolean draw(Canvas canvas, ViewGroup parent, long drawingTime) {
...
if (!drawingWithRenderNode) {
computeScroll();
sx = mScrollX;
sy = mScrollY;
}
...
if (!drawingWithDrawingCache) {
if (drawingWithRenderNode) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
((DisplayListCanvas) canvas).drawRenderNode(renderNode);
} else {
// Fast path for layouts with no backgrounds
if ((mPrivateFlags & PFLAG_SKIP_DRAW) == PFLAG_SKIP_DRAW) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
dispatchDraw(canvas);
} else {
draw(canvas);
}
}
} else if (cache != null) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
if (layerType == LAYER_TYPE_NONE) {
// no layer paint, use temporary paint to draw bitmap
Paint cachePaint = parent.mCachePaint;
if (cachePaint == null) {
cachePaint = new Paint();
cachePaint.setDither(false);
parent.mCachePaint = cachePaint;
}
cachePaint.setAlpha((int) (alpha * 255));
canvas.drawBitmap(cache, 0.0f, 0.0f, cachePaint);
} else {
// use layer paint to draw the bitmap, merging the two alphas, but also restore
int layerPaintAlpha = mLayerPaint.getAlpha();
mLayerPaint.setAlpha((int) (alpha * layerPaintAlpha));
canvas.drawBitmap(cache, 0.0f, 0.0f, mLayerPaint);
mLayerPaint.setAlpha(layerPaintAlpha);
}
}
...
}

上述代码会先判断之前是否进行过了绘制,如果没有则进入快速绘制通道,对没有背景的View进行绘制。判断是否需要跳过自身的draw绘制方法,如果跳过则进入dispatchDraw,不跳过则进入当前View的draw方法,即这一小节开头的draw方法,就此形成了循环。同时我们在这里看到了computeScroll()方法,也就印证了上一篇文章对于弹性滑动过程的描述。

流程图如下:



invalidate

三、小结

本文对上一篇遗留的问题postInvalidate与invalidate的区别进行了回答与分析,对invalidate的传递流程,以及View的绘制流程进行了源码分析,解答了invalidate是如何调用computeScroll()的问题。如果在阅读过程中,有任何疑问与问题,欢迎与我联系。

博客:www.idtkm.com

GitHub:https://github.com/Idtk

微博:http://weibo.com/Idtk

邮箱:IdtkMa@gmail.com


文章作者:Idtk

本文标题:View的invalidate传递与绘制流程分析

原始链接:http://www.idtkm.com/2016/08/02/9、Invalidate/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。